Number of times cited according to Scopus: 22 (Updated June 2022)

  • Sharma, N., Khurana, P. Genome-wide identification, characterization and expression analysis of the BRI1 gene family in Triticum aestivum L. (2022) Plant Biotechnology Reports. DOI: 10.1007/s11816-022-00762-0.
  • Liu, Z., Ren, Z., Yan, L., Li, F. DeepLRR: An Online Webserver for Leucine‐Rich‐Repeat Containing Protein Characterization Based on Deep Learning (2022) Plants, 11 (1), 136.
  • Chen, T. Identification and characterization of the LRR repeats in plant LRR-RLKs (2021) BMC Molecular and Cell Biology, 22 (1), 9.
  • Barragan, A.C., Collenberg, M., Wang, J., Lee, R.R.Q., Cher, W.Y., Rabanal, F.A., Ashkenazy, H., Weigel, D., Chae, E. A Truncated Singleton NLR Causes Hybrid Necrosis in Arabidopsis thaliana (2021) Molecular Biology and Evolution, 38 (2), 557-574.
  • Behzadi, P., García-Perdomo, H.A., Karpiński, T.M. Toll-Like Receptors: General Molecular and Structural Biology (2021) Journal of Immunology Research, 2021, 9914854.
  • Ma, X., Liu, B., Gong, Z., Yu, X., Cai, J. Structural and Evolutionary Adaptation of NOD-Like Receptors in Birds (2021) BioMed Research International, 2021, 5546170.
  • Sahoo, B.R. Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR) (2020) International Journal of Biological Macromolecules, 161, 1602-1617.
  • Martin, E.C., Sukarta, O.C.A., Spiridon, L., Grigore, L.G., Constantinescu, V., Tacutu, R., Goverse, A., Petrescu, A.J. Lrrpredictor—a new LRR motif detection method for irregular motifs of plant NLR proteins using an ensemble of classifiers (2020) Genes, 11 (3), 286.
  • Liu, R., Wang, J., Xiao, M., Gao, X., Chen, J., Dai, Y. AaCOI1, encoding a CORONATINE INSENSITIVE 1-like protein of artemisia annua l., is involved in development, defense, and anthocyanin synthesis (2020) Genes, 11 (2), 221.
  • Steele, J.F.C., Hughes, R.K., Banfield, M.J. Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor (2019) PLoS ONE, 14 (8), e0221226.
  • Wang, X., Zhao, X., Yan, C., Jia, Z., Lv, Z., Ma, C., Wang, M. A novel LRR and Ig domain-containing protein could function as an immune effector in Crassostrea gigas (2019) Fish and Shellfish Immunology, 88, 318-327.
  • Hafner-Bratkovič, I., Sušjan, P., Lainšček, D., Tapia-Abellán, A., Cerović, K., Kadunc, L., Angosto-Bazarra, D., Pelegrίn, P., Jerala, R. NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway (2018) Nature Communications, 9 (1), 5182.
  • Janssen, R., Lionel, L.Embryonic expression of a long toll (Loto) gene in the onychophorans euperipatoides kanangrensis and cephalofovea clandestina (2018) Development Genes and Evolution, 228 (3-4), 171-178.
  • Zou, S., Wang, H., Li, Y., Kong, Z., Tang, D. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat (2018) New Phytologist, 218 (1), 298-309.
  • Tran, P.-T., Widyasari, K., Seo, J.-K., Kim, K.H. Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to soybean mosaic virus (2018) Virology, 513, 153-159.
  • Dhanda, S.K., Usmani, S.S., Agrawal, P., Nagpal, G., Gautam, A., Raghava, G.P.S. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics (2017) Briefings in Bioinformatics, 18 (3), 467-478.
  • Bhaskara, G.B., Wen, T.-N., Nguyen, T.T., Verslues, P.E. Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response (2017) Plant Cell, 29 (1), 169-191.
  • Li, S., Chen, X., Hao, G., Geng, X., Zhan, W., Sun, J. Identification and characterization of a novel NOD-like receptor family CARD domain containing 3 gene in response to extracellular ATP stimulation and its role in regulating LPS-induced innate immune response in Japanese flounder (Paralichthys olivaceus) head kidney macrophages (2016) Fish and Shellfish Immunology, 50, 79-90.
  • Li, S., Chen, X., Li, X., Geng, X., Lin, R., Li, M., Sun, J. Molecular characterization of purinergic receptor P2X4 involved in Japanese flounder (Paralichthys olivaceus) innate immune response and its interaction with ATP release channel Pannexin1 (2015) Fish and Shellfish Immunology, 47 (1), 100-109.
  • Tran, P.-T., Choi, H., Choi, D., Kim, K.H. Molecular characterization of Pvr9 that confers a hypersensitive response to Pepper mottle virus (a potyvirus) in Nicotiana benthamiana (2015) Virology, 481, 113-123.
  • Maeda, H., Kurisu, K., Miyata, T., Kusakisako, K., Galay, R.L., Rio, T.M., Mochizuki, M., Fujisaki, K., Tanaka, T. Identification of the Babesia-responsive leucine-rich repeat domain-containing protein from the hard tick Haemaphysalis longicornis (2015) Parasitology Research, 114 (5), 1793-1802.
  • Danot, O. How 'arm-twisting' by the inducer triggers activation of the MalT transcription factor, a typical signal transduction ATPase with numerous domains (STAND) (2015) Nucleic Acids Research, 43 (6), 3089-3099.